

Correction Brevet 2018 (Maths Métropole)

Exercice 1 : Volume et coordonnées sphériques (11 points)

Exercice 2: Statistiques (14 points) Exercice 3: Probabilités (12 points) Exercice 4: Géométrie (14 points)

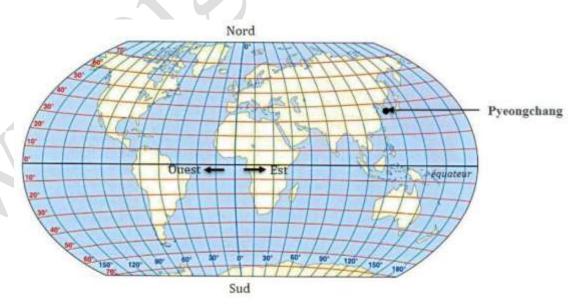
Exercice 5: Programme de calcul (16 points)

Exercice 6: Scratch (16 points) Exercice 7: Fonctions (17 points)

Voir le sujet : Cliquez ici

Exercice 1: Volumes

1)



Les coordonnées sphériques de Pyeongchang sont : latitude : 35° Nord et longitude : 130 Est (Voir la figure ci-dessus).

Voir le cours sur les Aires et Volumes

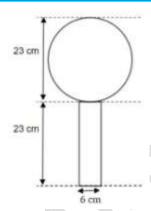
Le diamètre de la boule est 23 cm. Donc, le rayon 11,5 cm.

Le volume de la boule est donc :

$$V = 4/3 \times 11.5^3 \times \pi \approx 2.027.83 \ \pi \approx 6370.626 \ cm^3$$

Donc en arrondissant à l'unité:

$$V \approx 6.371 \text{ cm}^3$$



3)

• Le volume du cylindre de rayon 3 cm et de hauteur 23 cm est :

$$V' = \pi \times 3^2 \times 23 = 207\pi \text{ cm}^3$$

• Calcul du volume total :

$$VT = V + V' = 2234, 83\pi \text{ cm}^3 \approx 7020, 926$$

• Calcul du pourcentage.

On cherche alors ce que représente V par rapport au volume total VT soit :

$$V / VT = 2.027,83 \pi / 2234,83 \pi = 91\%$$

Le volume de la boule de cristal représente environ 90% du volume total du trophée.

Exercice 2 : Statistiques

Données statistiques sur les concentrations journalières en PM10 du 16 au 25 janvier 2017 à Lyon.

Moyenne : 72,5 μg/m³

Médiane: 83,5 µg/m³

Concentration minimale: 22 µg/m³
Concentration maximale: 107 µg/m³

Source: http://www.air-rhonealpes.fr

en P		ncentrations journalières au 25 janvier 2017 à
Ī	Date	Concentration PM10 en ug /m3

Date	Concentration PM10 en µg/m ³
16 janvier	32
17 janvier	39
18 janvier	52
19 janvier	57
20 janvier	78
21 janvier	63
22 janvier	60
23 janvier	82
24 janvier	82
25 janvier	89

1)

Voir le cours sur le Calcul de la Moyenne

- La concentration moyenne de Lyon est 72,5 μg/m³
- Calcul de la concentration moyenne à Grenoble :

$$M = (32 + 39 + 52 + 57 + 78 + 63 + 60 + 82 + 82 + 89) / 10 = 63,4 \mu g/m^3$$

On compare avec la concentration moyenne en PM10 obtenue à Lyon à la même période : 63,4 < 72,5 Donc, entre le 16 et le 25 janvier, Lyon a la plus forte concentration moyenne en PM10.

2)

Voir le cours sur le Calcul de l'étendu

• L'étendue des concentrations de Lyon est la différence des valeurs extrêmes soit :

$$E_{Lyon} = 107 - 22 = 85 \mu g/m^3$$

• L'étendue des concentrations de Grenoble est :

$$E_{Grenoble} = 89 - 32 = 57 \mu g/m^3 < 85 \mu g/m^3$$

Donc, On trouve l'étendue la plus importante à Lyon entre le 16 et le 25 janvier.

Interprétation : Les variations de concentration à Lyon en PM10 selon les jours, sont plus importantes qu'à Grenoble entre le 16 et le 25 janvier 2017.

3)

Voir le cours sur le Calcul de la Médiane

Pour Lyon, la médiane est 83, 5 μ g/ m³. Cela signifie que la moitié des valeurs enregistrées sont supérieures ou égale à la médiane (83.5 μ g/ m³). Cette série comporte 10 valeurs, donc il y a cinq valeurs enregistrées dont on est sûr qu'elles sont supérieures ou égales à 83,5 et donc strictement supérieures à 80 μ g/ m³. L'affirmation est donc vraie.

Le seuil d'alerte de 80 μg/m³ a donc été dépassé au moins cinq fois sur la période observée.

Exercice 3: Probabilités

1)

Dans son lecteur audio, Théo a téléchargé 375 morceaux de musique. Parmi eux, il y a 125 morceaux de rap donc en supposant qu'il y a équiprobabilité, la probabilité qu'il écoute du rap est :

$$P_1 = 125 / 375 = 1/3 \approx 0.33$$

2)

Le nombre de morceaux de rock dans son lecteur audio est :

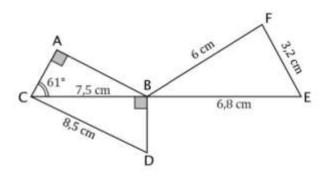
$$375 \times 7/15 = 175$$

3)

- Pour Théo, la probabilité qu'il écoute un morceau de rock est $7/15 \approx 0,466 \approx 47\%$
- Pour Alice, la probabilité qu'elle écoute un morceau de rock est 40%.

Donc, Théo a plus de chances d'écouter un morceau de rock.

Exercice 4 : Géométrie



1)

Voir le Cours sur le Théorème de Pythagore

Le triangle BCD est rectangle en B.

Donc, d'après le théorème de Pythagore on a :

$$DC^{2} = BD^{2} + BC^{2}$$

$$\Leftrightarrow 8,5^{2} = BD^{2} + 7,5^{2}$$

$$\Leftrightarrow BD^{2} = 8,5^{2} - 7,5^{2}$$

$$\Leftrightarrow BD^{2} = 72,25 - 56,25$$

$$\Leftrightarrow BD^{2} = 16$$

$$\Leftrightarrow BD = 4 \text{ ou } BD = -4$$

BD est <u>une longueur</u>. Donc, il est positif et l'unique solution possible est :

2)

$$BD = 4 \text{ cm}$$

On va faire le rapport des longueurs en les classant par ordre croissant :

Les trois rapports de longueurs des triangles sont égaux, donc les triangles CBD et BFE sont semblables. Le coefficient multiplicateur est k = 1, 25 qui permet de passer de BEF à BCD.

3)

Vidéo: Lien entre l'Hypoténuse et l' angle droit

Puisque les triangles BEF et BCD sont semblables, ils sont de même nature donc rectangle. L'hypoténuse étant le plus grand côté, c'est [BE] dans BEF. Donc, le triangle BEF est nécessairement rectangle en F.

Dans le triangle BCD rectangle en B on a :

 $\cos \widehat{BCD} = \text{CB/CD} = 7.5/8.5 \implies \widehat{BCD} = \text{Arccos } 7.5/8.5 \approx 28.07^{\circ}$

Donc $\widehat{ACD} = \widehat{ACB} + \widehat{BCD} = 61^{\circ} + 28,07^{\circ} = 89,07^{\circ}$

Donc, \widehat{ACD} n'est pas un angle droit.

Exercice 5: Programme de Calcul

- Choisir un nombre
- Multiplier ce nombre par 4
- Ajouter 8
- Multiplier le résultat par 2

1)

- Choisir un nombre : -1
- Multiplier ce nombre par 4 : $(-1) \times 4 = -4$
- Ajouter 8: -4 + 8 = 4
- Multiplier le résultat par 2 : $4 \times 2 = 8$
- Résultat: 8

2)

On va effectuer le programme à l'envers :

- Résultat : 30
- On divise par $2:30 \div 2 = 15$
- Enlever 8:15-8=7
- Diviser par $4:7 \div 4 = 1,75$
- Nombre de départ : 1,75

3)

$$A = 2(4x + 8)$$
 et $B = (4 + x)^2 - x^2$

Pour prouver que les deux expressions A et B sont égales, on va les développer :

Cours Produit de Nombre relatifs

Cours Addition de Nombre relatifs

Cours Addition de Nombre relatifs

D'une part:

$$A = 2(4 x + 8) = 8 x + 16$$

D'autre part :

$$B = (4 + x)^{2} - x^{2} = 16 + 8x + x^{2} - x^{2} = 8x + 16$$

Donc, les deux expressions A et B sont égales.

4)

Affirmation 1 (Fausse) : Ce programme donne un résultat positif pour toutes les valeurs de x.

Preuve:

Donc par exemple par x = -3, le résultat du programme est :

$$8x + 16 = 8 \times (-3) + 16 = -24 + 16 = -8 < 0$$

Donc, l'affirmation est fausse.

Affirmation 2 (Vraie) : Si le nombre x choisi est un nombre entier, le résultat obtenu est un multiple de 8.

Preuve:

On a vu que le résultat s'exprime sous la forme de 8x + 16 soit en factorisant, on obtient pour x entier :

$$8x + 16 = 8(x + 2)$$

Puisque $x \in \mathbb{N}$ alors $(x + 2) \in \mathbb{N}$

Donc, 8(x+2) représente toujours un multiple de 8 puisqu' il s'exprime sous la forme 8k avec k entier.

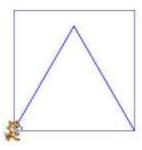
L'affirmation est vraie.

Exercice 6 : Scratch

```
quand est clique
                                     définir Carré
                                        éter 4 fois
                                       avancer de Longueur
stylo en position d'écriture
                                       tourner 🔼 de 90 degrés
s'orienter à 90 v
mettre Longueur 🔻 🗴 150
Carré
Triangle
                                      définir Triangle
avancer de Longueur / 6
mettre Longueur ▼ å 0
                                        avancer de Longueur
Carré
                                        tourner 🔼 de (120) degrés
Triangle
```

1)

1.a) Représenter sur votre copie la figure obtenue si le programme est exécuté jusqu'à la ligne 7 comprise. (On prend comme échelle 1 cm pour 50 pixels)

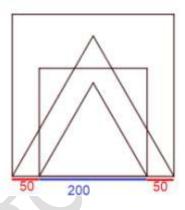


1.b)

Après l'exécution de la ligne 7, le stylo revient à la position initiale (0 ; 0). Après l'exécution de la ligne 8,

le stylo avance de Longueur/6 = 300/6 = 50 vers la droite donc ses coordonnées sont (50; 0).

2)



D'après la question précédente, le stylo est en (50 ; 0). Á partir de là, on doit donc tracer un carré et un triangle plus petit que les précédents. On a avancé de 50, par symétrie donc la dimension du petit carré est égale à celle du grand moins deux fois 50 soit :

$$300 - 2 \times 50 = 200$$

Il suffit donc d'affecter la valeur 200 à la variable longueur.

3)

3.a)

Une homothétie de rapport k = 200/300 = 2/3 permet d'obtenir le petit carré à partir du grand carré.

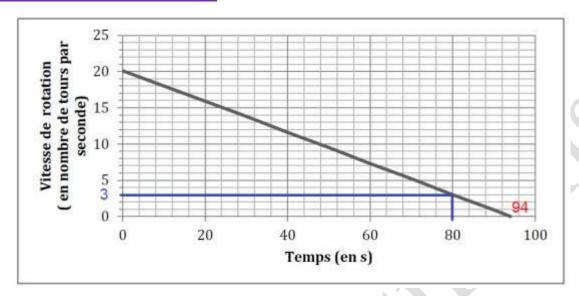
3. b)

Cours sur l'Agrandissement / Réduction

Une homothétie de rapport k = 2/3 permet d'obtenir le petit carré à partir du grand carré donc les distances sont multipliées par k et les aires par $k^2 = 4/9$.

<u>Agrandissement/Réduction</u>: Quand on multiplie les distances par un réel strictement positif k, les aires le sont par k^2 et les volumes par k^3 .

Exercice 7 : Fonctions



 La courbe représentative de la vitesse en fonction du temps est une droite qui ne passe pas par l'origine du repère.

Donc le temps et la vitesse de rotation du hand-spinner ne sont pas proportionnels.

2)

2.a)

La vitesse de rotation initiale du hand-spinner est de 20 tours/seconde.

2.b)

Au bout d'1 minute et 20 secondes soit après 80 secondes, la vitesse de rotation du hand-spinner est d'environ <u>3 tours/seconde</u>.

2.c)

La droite coupe l'axe des abscisses à $t \approx 94$ s. Donc, Le hand-spinner va s'arrêter au bout de **94 secondes** environ.

3)

3.a)

La vitesse de rotation au bout de 30 s est :

$$V(30) = -0, 214 \times 30 + 20 = 13, 58 \text{ tours/secondes}$$

3.b)

Le hand-spinner va s'arrêter quand sa vitesse de rotation sera nulle soit pour t vérifiant :

Comment résoudre une équations (les bases)

$$V(t) = 0 \Leftrightarrow -0, 214 \times t + 20 = 0$$

$$\Leftrightarrow -0, 214 \times t = -20$$

$$\Leftrightarrow t = -20/-0, 214$$

$$\Leftrightarrow t \approx 93, 46 \text{ s}$$

On retrouve bien le résultat approchée lu lors de la question (2.c.)

3.c)

On va comparer les valeurs qui annulent :

$$V1(t) = -0, 214 \times t + Vinitiale$$

 $V2(t) = -0, 214 \times t + 2 \times Vinitiale$

Comment résoudre une équations (les bases

$$V1(t) = 0 \Leftrightarrow -0, 214 \times t1 + Vinitiale = 0$$

 $\Leftrightarrow -0, 214 \times t1 = -Vinitiale$
 $\Leftrightarrow t1 = -Vinitiale / -0,214$
 $\Leftrightarrow t1 = Vinitiale / 0,214$

$$\begin{array}{lll} V1(t\)=0 &\Leftrightarrow & -0,\, 214\times t2+ \textbf{2Vinitiale}=0\\ &\Leftrightarrow & -0,\, 214\times t2=-2 Vinitiale\\ &\Leftrightarrow & t2=-2 Vinitiale\ /\ -0,214\\ &\Leftrightarrow & t2=2 Vinitiale\ /\ 0,214\\ &\Leftrightarrow & t2=2\ *\ t1 \end{array}$$

On obtient alors un temps d'arrêt pour V2 égal au double du temps d'arrêt pour V1.

D'une manière générale, si l'on fait tourner le hand-spinner deux fois plus vite au départ, il tournera deux fois plus longtemps.